Nanostructured materials through orthogonal self-assembly in a columnar liquid crystal
Chemistry of Materials, ISSN: 0897-4756, Vol: 20, Issue: 6, Page: 2394-2404
2008
- 62Citations
- 46Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper describes a system in which an acid functionalized discotic molecule and poly(propyleneimine) dendrimer self-assemble into a new type of oblique columnar liquid crystalline (LC) phase that displays a well-ordered superlattice. The orthogonal combination of hydrogen bonding in the columnar direction and ionic interaction in the plane perpendicular to the columns gives rise to a structure in which the dendrimer is confined to separate columnar domains. The structure of the mesophases formed in the mixed system has been elucidated by infrared spectroscopy and X-ray diffraction. Investigation by differential scanning calorimetry and polarizing optical microscopy has shown that the LC phase is most stable in an 8:1 molar mixture but remains stable over a wide temperature and composition range. In dendrimer enriched mixtures the lattice swells to take up more dendrimer, while discotic enriched mixtures show the appearance of lamellar phases with a columnar structure that is probably closely related to the oblique superlattice. Additionally, the structure of the oblique superlattice can be covalently stabilized at elevated temperature via amidation of the ionic carboxylic acid-amine complexes. The results show the potential of orthogonal self-assembly in columnar LC phases to obtain nanostructured materials with a periodicity of 2-10 nm. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know