Proteases universally recognize beta strands in their active sites
Chemical Reviews, ISSN: 0009-2665, Vol: 105, Issue: 3, Page: 973-999
2005
- 364Citations
- 187Captures
- 5Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations364
- Citation Indexes364
- 364
- CrossRef319
- Captures187
- Readers187
- 187
- Mentions5
- References4
- Wikipedia4
- News Mentions1
- News1
Most Recent News
Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus
Nature, Published online: 04 January 2023; doi:10.1038/s41586-022-05583-3 Cryo-electron microscopy structures of Staphylococcus aureus BlaR1 reveal dynamic signalling states regulating broad spectrum β-lactam antibiotic resistance through cleavage of the transcriptional repressor BlaI and induced expression of the β-lactamase blaZ and the β-lactam-resistant cell-wall transpeptidase mecA.
Review Description
One way to combat infectious diseases is to selectively inhibit foreign proteases within host cells, thus retarding replication rates of infectious organisms and assisting normal immunological defense mechanisms involved in their eradication. This review gives a summary of over 1500 three dimensional crystal (X-ray) and solution (NMR) structures from the pdb of substrates, products and inhibitors bound in the active sites of aspartic, serine, metallo, cysteine, and threonine endopeptidases. These active sites of all five protease classes recognize peptidic and non-peptidic ligands in an extended beta strand conformation, with few exceptions. Comparisons of protease-bound ligand conformations are illustrated by structural superpositions for a subset of structures, including 21 aspartic, 44 serine, 20 metallo, 23 cysteine, and 2 threonine proteases, among the protease-ligand structures analyzed. The extended substrate-binding mode is also illustrated for 3 aspartic proteases, 1 serine protease, 1 cysteine protease and 1 metalloprotease.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know