Studies of bitumen-silica and oil-silica interactions in ionic liquids
Energy and Fuels, ISSN: 0887-0624, Vol: 25, Issue: 1, Page: 293-299
2011
- 78Citations
- 67Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Previous work in this laboratory has shown that bitumen and oil can be readily separated from sand, using ionic liquids at ambient temperatures. To probe the mechanism underlying the relative ease of separation, atomic force microscopy (AFM) has been used to study interaction forces and adhesion between bitumen surfaces and a silica probe in the presence of liquid media. The energy of adhesion between bitumen samples obtained from both Canadian and U.S. oil sands are approximately an order of magnitude smaller in an ionic liquid medium than in aqueous solution. This behavior was traced to the ability of ionic liquids to form layered charge structures on surfaces. Although interactions between the silica probe and an aged crude oil sample could not be determined, because the probe adhesion to the oil film exceeded the force capacity of the AFM, thermodynamic considerations indicate that the energy of separation of silica from aged oil is also significantly smaller in an ionic liquid medium than in aqueous solution. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know