Joint industrial case study for asphaltene deposition
Energy and Fuels, ISSN: 0887-0624, Vol: 27, Issue: 4, Page: 1899-1908
2013
- 55Citations
- 64Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Here, we present a case study on a Wyoming well with known asphaltene deposition issues as a result of natural depletion. Field deposits and crude oil from the same well were collected for analysis. Compositional differences between field deposits, lab-generated capillary deposits, and C -precipitated asphaltenes were determined by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and all three samples show similar trends in composition, displayed as plots of aromaticity versus carbon number. An enrichment of highly condensed aromatic molecules for the field deposit is detected with both ultrahigh-resolution mass spectrometry and thermal cracking experiments and could predict asphaltene deposition. FT-ICR mass spectral analysis of solvent-extracted fractions suggest different deposition mechanisms for field deposits (slow deposition) compared to rapid precipitation in standard asphaltene preparation protocols that contain trapped maltenes. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know