Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage
Environmental Science and Technology, ISSN: 0013-936X, Vol: 46, Issue: 11, Page: 6088-6095
2012
- 41Citations
- 63Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations41
- Citation Indexes40
- 40
- CrossRef33
- Policy Citations1
- Policy Citation1
- Captures63
- Readers63
- 63
Article Description
We present an application of Raman microspectroscopy (RMS) for the rapid characterization and identification of individual spores from several species of microfungi. The RMS-based methodology requires minimal sample preparation and small sample volumes for analyses. Hence, it is suitable for preserving sample integrity while providing micrometer-scale spatial resolution required for the characterization of individual cells. We present the acquisition of unique Raman spectral signatures from intact fungal spores dispersed on commercially available aluminum foil substrate. The RMS-based method has been used to compile a reference library of Raman spectra from several species of microfungi typically associated with damp indoor environments. The acquired reference spectral library has subsequently been used to identify individual microfungal spores through direct comparison of the spore Raman spectra with the reference spectral signatures in the library. Moreover, the distinct peak structures of Raman spectra provide detailed insight into the overall chemical composition of spores. We anticipate potential application of this methodology in the fields of public health, forensic sciences, and environmental microbiology. © 2012 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know