PlumX Metrics
Embed PlumX Metrics

Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells

Environmental Science and Technology, ISSN: 0013-936X, Vol: 46, Issue: 23, Page: 13009-13015
2012
  • 207
    Citations
  • 0
    Usage
  • 79
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The microbial fuel cell (MFC), being an environment-friendly technology for wastewater treatment, is limited by low efficiency and high cost. Power output based on capital cost had been greatly increased in our previous work by introducing a novel activated carbon (AC) air-cathode (ACAC). The catalysis behavior of this ACAC was studied here based on catalysis kinetics and pore analysis of both carbon powders and catalyst layers (CLs). Plain AC (AC1#), ultracapacitor AC (AC2#), and non-AC (XC-72) powders were used as catalysts. The electron transfer number (n) of oxygen reduction reaction (ORR) with CLs increased by 5-23% compared to those n values of corresponding carbon powders before being rolled to CLs with PTFE, while the n value of Pt/C decreased by 38% when it was brushed with Nafion as the CL, indicating that rolling procedure with PTFE binder substantially increased the catalytic activity of carbon catalysts. Two-four times larger in micropore area of AC powders than non-AC powder resulted in 1.3-1.9 times increase in power density of MFCs. In addition, more uniform distribution of microporosity was found in AC1# than in AC2#, which could be the reason for the 25% increase in power density of ACAC1# (1355 ± 26 mW·m) compared to 1086 ± 8 mW·m of ACAC2#. © 2012 American Chemical Society.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know