PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation
Environmental Science and Technology, ISSN: 0013-936X, Vol: 43, Issue: 10, Page: 3757-3763
2009
- 111Citations
- 85Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations111
- Citation Indexes107
- 107
- CrossRef99
- Policy Citations4
- Policy Citation4
- Captures85
- Readers85
- 85
Article Description
In situ exposure concentrations of chemicals in sediments and their depending risks are determined by site-specific parameters(e.g., sedimentorganiccarboncomposition),controlling bioavailability. Over the years, several analytical methods have been developed to assess bioavailable concentrations or fractions. Some of these methods have been successful in the laboratory, but few attempts have been made to test their potential for predicting actual in situ bioavailability. In this study, solid-phase microextraction (SPME)-fibers and aquatic worms (Lumbriculus variegatus) were exposed in situ at three locations. In addition, laboratory-based methods, i.e., methods with which sampling of the bioavailable fraction/concentration took place in the laboratory, being SPME, polyoxymethylene solid-phase extraction (POM-SPE), hydroxypropyl-β-cyclodextrin-(HPCD), and 6 h-Tenax extraction were applied to sediments collected at the locations. Using equilibrium partitioning-based calculations, biotic PAH levels were calculated from the concentrations or fractions extracted by the used methods. In general, method-predicted concentrations were within a factor of 10 of those measured in field-exposed oligochaetes, with in situ SPME and laboratory-based POM-SPE yielding the best results. As a reference, the currently used generic risk assessment approach overpredicted biotic concentrations by a factor of 10-100, which corresponded to in situ SPME-derived sediment-water distribution coefficients and biota-tosediment accumulation factors being up to 2 orders of magnitude higher and lower, respectively, than generic values. These observations advocate site-specific risk assessment for PAHs, for which potential tools were evaluated in this study. © 2009 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know