Mono- and dinuclear oxovanadium(V)calixarene complexes and their activity as oxidation catalysts
Inorganic Chemistry, ISSN: 0020-1669, Vol: 45, Issue: 20, Page: 8308-8317
2006
- 60Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The background of the investigation is constituted by reactive moieties and intermediates playing relevant roles on the surfaces of vanadiumoxide-based catalysts during the oxygenation/dehydrogenation of organic substrates. With the aim of modeling such species, a series of mono- and dinuclear charged and uncharged vanadium oxo complexes containing p-tert-butylated calix[4]arene and calix[8]arene ligands (denoted HB and HB″, respectively, in the protonated forms) has been synthesized and characterized: PPh[O=VB] (1), O=VB (2), PPh [OVHB″] (3), and [μ-O(O=V(OMe)) B] (4), where superscripts OAc and Me2 indicate that one or two protons of HB are substituted by these residues, respectively. These compounds were analyzed both in solution and by means of single-crystal X-ray crystallography; it turned out that the crystal structures are retained on dissolution (2 changed only from the paco to the cone structure). In the case of 4, it could be shown that the bulk product consists of a mixture of two isomers (4 and 4) differing in the relative positions of the vanadium-bound methoxy groups. Subsequently, all compounds were tested as catalysts for the oxidation of alcohols with O . It turned out that the two dinuclear complexes efficiently catalyze the oxidation of 1-phenyl-1-propargyl alcohol and fluorenol; in addition, they even show some activity with respect to the oxidation of dihydroanthracene. This may hint to a higher activity of dinuclear sites on the surfaces of heterogeneous catalysts as well. © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know