Capacity planning under clinical trials uncertainty in continuous pharmaceutical manufacturing, 2: Solution method
Industrial and Engineering Chemistry Research, ISSN: 0888-5885, Vol: 51, Issue: 42, Page: 13703-13711
2012
- 19Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In Part 1 of this paper, we presented a scenario-based multiperiod mixed-integer linear programming (MILP) formulation for a capacity planning problem in continuous pharmaceutical manufacturing under clinical trials uncertainty. The number of scenarios and, thus, the formulation size grows exponentially with the number of products. The model size easily becomes intractable for conventional algorithms for more than 8 products. However, industrial-scale problems often involve 10 or more products, and thus a scalable solution algorithm is essential to solve such large-scale problems in reasonable times. In this part of the paper, we develop a rigorous decomposition strategy that exploits the underlying problem structure. We demonstrate the effectiveness of the proposed algorithm using several examples containing up to 16 potential products and over 65 000 scenarios. With the proposed decomposition algorithm, the solution time scales linearly with the number of scenarios, whereby a 16-product example with over 65 million binary variables, nearly 240 million continuous variables, and over 250 million constraints was solved in less than 6 h of solver time. © 2012 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know