Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation
Journal of the American Chemical Society, ISSN: 0002-7863, Vol: 127, Issue: 44, Page: 15595-15601
2005
- 209Citations
- 91Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations209
- Citation Indexes209
- CrossRef209
- 209
- Captures91
- Readers91
- 91
Article Description
Here, we present a systematic study on the influence of the bioligand deferoxamine mesylate on the crystallization and assembly behavior of tungsten oxide in a soft-chemistry process. Without deferoxamine mesylate, this approach yields pseudo-single crystalline tungstite nanoplatelets consisting of a large number of crystallographically almost perfectly aligned primary crystallites. In the presence of a constant amount of deferoxamine, the particle morphology drastically changes with temperature, ranging from wormlike organic-inorganic hybrid nanostructures to single-crystalline tungsten oxide nanowires, highlighting the role of the bioligand in controlling the crystal growth and assembly behavior. The nanowires have a uniform diameter of about 1.3 nm, an aspect ratio of more than 500, and the structural flexibility of tungsten oxide. The presented process is based on the combination of biomimetic construction principles with nonaqueous sol-gel chemistry, thus combining the advantages of both tools, excellent control over particle morphology and high crystallinity at low temperature. © 2005 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know