Electron transfer reactions of fluorotyrosyl radicals
Journal of the American Chemical Society, ISSN: 0002-7863, Vol: 128, Issue: 42, Page: 13654-13655
2006
- 49Citations
- 52Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations49
- Citation Indexes49
- 49
- CrossRef45
- Captures52
- Readers52
- 52
Article Description
The complex Re(bpy)(CO)CN is an excited state oxidant of tyrosine upon deprotonation of the tyrosyl phenol. A series of Re(bpy-FY)(CO)CN complexes ([Re]-FY: [Re]-Y, [Re]-3-FY, [Re]-3,5-F2Y, [Re]-2,3-FY, [Re]-2,3,5-FY, [Re]-2,3,6-FY, and [Re]-FY) have been prepared so as to vary the FY/FY reduction potential and thus the driving force for electron transfer in this system. Time-resolved emission and nanosecond absorption spectroscopies have been used to measure the rates for charge separation, CS, and charge recombination, CR, for each complex. A driving force analysis reveals that CS is well described by Marcus' theory for ET, is strongly driving force dependent (activated), and occurs in the normal region for ET. CR, on the other hand, is weakly driving force dependent (near activationless) and occurs in the inverted region for ET. These data demonstrate that fluorotyrosines will be powerful probes for unraveling charge transport mechanisms in enzymes that utilize tyrosyl radicals. Copyright © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know