Understanding a mechanism of organic cosolvent inactivation in heme monooxygenase P450 BM-3
Journal of the American Chemical Society, ISSN: 0002-7863, Vol: 129, Issue: 18, Page: 5786-5787
2007
- 41Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations41
- Citation Indexes41
- 41
- CrossRef40
- Captures49
- Readers49
- 49
Article Description
Cytochrome P450 BM-3 (EC 1.14.14.1) catalyzes valuable oxygenation reactions for a broad range of industrially important substrates. Many of these substrates are poorly water-soluble, and P450 BM-3 is rapidly inactivated in presence of organic cosolvents. (Wong, T.S.; Arnold, F.H.; Schwaneberg, U. Biotechnol. Bioeng. 85 (3) 351-8.) Understanding how cosolvents reduce P450 BM-3 activity is of high academic and industrial interest. In a first attempt, we investigated the inactivation mechanism of DMSO by crystallizing P450 BM-3 heme domain (BMP) in 14% (v/v) and 28% (v/v) DMSO, denoted as Lo-DMSO and Hi-DMSO. The overall structures of Lo-DMSO (2.1 Å) and Hi-DMSO (1.7 Å) are similar to the reported structure (1BU7) in absence of DMSO. No indication of partial or global unfolding was found in the Lo-DMSO and Hi-DMSO structures as predicted by our previous molecular dynamics simulations and UV-vis measurements. In the Lo-DMSO structure, we observed a nonplanar distortion of heme and a displaced sixth water ligand. In the Hi-DMSO structure, the sixth water ligand was replaced by a DMSO molecule which is directly coordinated via its sulfur atom to the heme iron. Furthermore, the kink in the I-helix is more pronounced. The Lo- and Hi-DMSO structures suggest a cosolvent inactivation mechanism through covalent binding by the cosolvent DMSO to the heme iron. Copyright © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know