Sensitivity-Enhanced Solid-State NMR Detection of Structural Differences and Unique Polymorphs in Pico- To Nanomolar Amounts of Brain-Derived and Synthetic 42-Residue Amyloid-β Fibrils
Journal of the American Chemical Society, ISSN: 1520-5126, Vol: 143, Issue: 30, Page: 11462-11472
2021
- 31Citations
- 35Captures
- 3Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
- CrossRef20
- Captures35
- Readers35
- 35
- Mentions3
- News Mentions3
- 3
Most Recent News
Tokyo Institute of Technology: Novel Alzheimer's Disease Amyloid Beta Polymorph Now Revealed
(TNSJou) -- Tokyo Institute of Technology issued the following news release: Sensitivity-enhanced solid-state NMR spectroscopy can be used in the structural characterization of amyloid Beta--the
Article Description
Amyloid-β (Aβ) fibrils in neuritic plaques are a hallmark of Alzheimer's disease (AD). Since the 42-residue Aβ (Aβ42) fibril is the most pathogenic among different Aβ species, its structural characterization is crucial to our understanding of AD. While several polymorphs have been reported for Aβ40, previous studies of Aβ42 fibrils prepared at neutral pH detected essentially only one structure, with an S-shaped β-sheet arrangement (e.g., Xiao et al. Nat. Struct. Mol. Biol. 2015, 22, 499). Herein, we demonstrate the feasibility of characterizing the structure of trace amounts of brain-derived and synthetic amyloid fibrils by sensitivity-enhanced 1H-detected solid-state NMR (SSNMR) under ultrafast magic angle spinning. By taking advantage of the high sensitivity of this technique, we first demonstrate its applicability for the high-throughput screening of trace amounts of selectively 13C- and 15N-labeled Aβ42 fibril prepared with ∼0.01% patient-derived amyloid (ca. 4 pmol) as a seed. The comparison of 2D 13C/1H SSNMR data revealed marked structural differences between AD-derived Aβ42 (∼40 nmol or ∼200 μg) and synthetic fibrils in less than 10 min, confirming the feasibility of assessing the fibril structure from ∼1 pmol of brain amyloid seed in ∼2.5 h. We also present the first structural characterization of synthetic fully protonated Aβ42 fibril by 1H-detected 3D and 4D SSNMR. With procedures assisted by automated assignments, main-chain resonance assignments were completed for trace amounts (∼42 nmol) of a fully protonated amyloid fibril in the 1H-detection approach. The results suggest that this Aβ42 fibril exhibits a novel fold or polymorph structure.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know