Rhodamine-pink as a genetic marker for yeast populations in wine fermentation
Journal of Agricultural and Food Chemistry, ISSN: 0021-8561, Vol: 54, Issue: 8, Page: 2977-2984
2006
- 12Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef11
- Captures32
- Readers32
- 32
Article Description
Winemaking with selected yeasts requires simple techniques to monitor the inoculated yeast. New high-concentration rhodamine-resistant mutants and low-concentration rhodamine-pink mutants, easy to detect by replica-plate assay, were obtained from selected wine yeasts. The rhodamine-pink mutations were dominant and were located at the pdr5 locus that encodes for the Pdr5 ATP-binding cassette multidrug resistance transporter. The mutants were genetically stable but had lost the killer phenotype of the parent yeast strain. They were genetically improved by elimination of recessive growth-retarding alleles followed by crossing with selected killer wine yeasts. Several spore-clones were selected according to their must fermentation kinetics and the organoleptic quality of the wine. Some spore-clones were tested in industrial winemaking, and they were easily monitored during must fermentation using a simple color-plate assay. They accounted for > 96% of the total yeasts in the must, and the resulting wine had as good a quality as those made with standard commercial wine yeasts. The rhodamine-pink yeasts may also be detected by direct seeding onto rhodamine agar or by observation under fluorescence microscopy. These possibilities greatly reduce the time of analysis and make the monitoring procedure for rhodamine-pink yeasts faster, easier, and cheaper than for the genetically marked wine yeasts obtained previously. © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know