Immobilization of recombinant invertase (re-INVB) from Zymomonas mobilis on D-sorbitol cinnamic ester for production of invert sugar
Journal of Agricultural and Food Chemistry, ISSN: 0021-8561, Vol: 56, Issue: 4, Page: 1392-1397
2008
- 7Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef7
- Captures13
- Readers13
- 13
Article Description
The recombinant invertase (re-INVB) from Zymomonas mobilis was immobilized by adsorption onto the totally cinnamoylated derivative of D-sorbitol. The polymerization and cross-linking of the derivative initially obtained was achieved by irradiation in the ultraviolet region, where this prepolymer shows maximum sensitivity. Immobilization of re-INVB on this support involves a process of physical adsorption and intense hydrophobic interactions between the cinnamoyl groups of the support and related groups of the enzyme. Enzyme concentration, immobilization time, and irradiation time were important parameters affecting the immobilization efficiency. The optimum reaction pH of immobilized enzyme was 5, and the optimal reaction temperature was 40°C. The apparent Michaelis constant and the apparent catalytic constant of re-INVB immobilized on the SOTCN derivative acting on sucrose was 78 ± 5 mM and 5 × 10 ± 3 × 10 s, respectively, while for the free enzyme, it was 98.0 ± 4 mM and 1.2 × 10 ± 2.5 × 10 s, respectively, suggesting a better apparent affinity of the enzyme for the substrate and a better hydrolysis rate when immobilized than when in solution. Immobilized re-INVB also showed good thermal stability and good operational stability (40% of the initial activity remaining after 45 cyles of 1 min duration and 90.6 mg of sucrose being hydrolyzed in 45 min per 2.5 mg of immobilized protein). The results showed that cinnamic carbohydrate esters of D-sorbitol are an appropriate support for re-INVB immobilization and the production of invert sugar. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know