Heat-induced aggregation of whey proteins in aqueous solutions below their isoelectric point
Journal of Agricultural and Food Chemistry, ISSN: 0021-8561, Vol: 62, Issue: 3, Page: 733-741
2014
- 36Citations
- 58Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Processing beverages containing high concentrations of globular proteins represents a technological challenge due to their instability during heating caused by protein aggregation and gelation. Aggregation of whey protein mixtures was investigated in aqueous model systems at pH 3.5, 4.0, and 4.5 at heating conditions resembling conventional industrial treatment (90 C for 30 s). The extent of aggregation progressively decreased moving away from the pI. Protein aggregates became smaller and had a more open structure compared to higher pH values. Significant loss of protein dispersibility occurred at pH 4.0 and 4.5 above the denaturation T of whey protein (∼70 C), at which aggregation was caused by intermolecular hydrophobic interactions. Accessible thiol groups were detected in the heat-treated systems, with a higher intensity at higher pH and increasing extent of aggregation. Intermolecular -S-S- bonding played only a minor role in the aggregation at all conditions studied. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know