Identification of hot spots within druggable binding regions by computational solvent mapping of proteins
Journal of Medicinal Chemistry, ISSN: 0022-2623, Vol: 50, Issue: 6, Page: 1231-1240
2007
- 124Citations
- 113Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations124
- Citation Indexes124
- 124
- CrossRef102
- Captures113
- Readers113
- 113
Article Description
Here we apply the computational solvent mapping (CS-Map) algorithm toward the in silico identification of hot spots, that is, regions of protein binding sites that are major contributors to the binding energy and, hence, are prime targets in drug design. The CS-Map algorithm, developed for binding site characterization, moves small organic functional groups around the protein surface and determines their most energetically favorable binding positions. The utility of CS-Map algorithm toward the prediction of hot spot regions in druggable binding pockets is illustrated by three test systems: (1) renin aspartic protease, (2) a set of previously characterized druggable proteins, and (3) E. coli ketopantoate reductase. In each of the three studies, existing literature was used to verify our results. Based on our analyses, we conclude that the information provided by CS-Map can contribute substantially to the identification of hot spots, a necessary predecessor of fragment-based drug discovery efforts. © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know