Impregnated ruthenium on magnetite as a recyclable catalyst for the N-alkylation of amines, sulfonamides, sulfinamides, and nitroarenes using alcohols as electrophiles by a hydrogen autotransfer process
Journal of Organic Chemistry, ISSN: 0022-3263, Vol: 76, Issue: 14, Page: 5547-5557
2011
- 228Citations
- 94Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations228
- Citation Indexes228
- 228
- CrossRef204
- Captures94
- Readers94
- 94
- Mentions1
- Blog Mentions1
- 1
Most Recent Blog
In the Lab: Ductile Metal Oxides Impregnated on Magnetite: New Catalysts in Organic Synthesis
Diego J. Ram?n is a Professor in the Department of Organic Chemistry at the University of Alicante, Spain. His research focuses on the development of catalysts based on transition metal oxides impregnated on the surface of magnetite and their application to different reactions of general interest in Organic Chemistry. He has published over 100 papers.... The post In the Lab: Ductile Metal Oxides I
Article Description
Various impregnated metallic salts on magnetite have been prepared, including cobalt, nickel, copper, ruthenium, and palladium salts, as well as a bimetallic palladium - copper derivative. Impregnated ruthenium catalyst is a versatile, inexpensive, and simple system for the selective N-monoalkylation of amino derivatives with poor nucleophilic character, such as aromatic and heteroaromatic amines, sulfonamides, sulfinamides, and nitroarenes, using in all cases alcohols as the initial source of the electrophile, through a hydrogen autotransfer process. In the case of sulfinamides, this is the first time that these amino compounds have been alkylated following this strategy, allowing the use of chiral sulfinamides and secondary alcohols to give the alkylated compound with a diastereomeric ratio of 92:8. In these cases, after alkylation, a simple acid deprotection gave the expected primary amines in good yields. The ruthenium catalyst is quite sensitive, and small modifications of the reaction medium can change the final product. The alkylation o amines using potassium hydroxide renders the N-monoalkylated amines, and the same protocol using sodium hydroxide yields the related imines. The catalyst can be easily removed by a simple magnet and can be reused up to ten times, showing the same activity. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know