Conformational change of the cation-anion pair of an ionic liquid related to its low-temperature solid-state phase transitions
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 108, Issue: 26, Page: 9246-9250
2004
- 11Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A first-principles ab initio density functional and semiempirical molecular dynamics study on the recently discovered low-temperature crystalline to crystalline phase transition of the l-methyl-3-tetradecylimidazolium hexafluorophosphate ([Cmim][PF] was performed. The results show that the experimentally obtained thermally activated change of the a, b, and c unit cell dimensions basically relates to two different facts. At an increased temperature the longest dimension c is lengthened by increased atomic motions inside the alkyl chain in accordance with the experiments. However, earlier experiments have shown that the dimension a was increased while, curiously, the b dimension was shortened with increasing temperature. Our results show that this unexpected change can be explained by the interconversion of two stable conformations of the [Cmim] [PF] pair. Related molecular dynamic simulation supports this observation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know