Hydrogen bonds not only provide a structural scaffold to assemble donor and acceptor moieties of zinc porphyrin-quinone dyads but also control the photoinduced electron transfer to afford the long-lived charge-separated states
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 109, Issue: 16, Page: 7713-7723
2005
- 41Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations41
- Citation Indexes41
- 41
- CrossRef35
- Captures16
- Readers16
- 16
Article Description
A series of zinc porphyrin-quinone linked dyads [ZnP-CONH-Q, ZnP-NHCO-Q, and ZnP-n-Q (n = 3, 6, 10)] were designed and synthesized to investigate the effects of hydrogen bonds which can not only provide a structural scaffold to assemble donor and acceptor moieties but also control the photoinduced electron-transfer process. In the case of ZnP-CONH-Q and ZnP-NHCO-Q, the hydrogen bond between the N-H proton and the carbonyl oxygen of Q results in the change in the reduction potential of Q. The strong hydrogen bond between the N-H proton and the carbonyl oxygen of Q in ZnP-CONH-Q, ZnP-NHCO-Q, and ZnP-n-Q (n = 3, 6, 10) generated by the chemical reduction has been confirmed by the ESR spectra, which exhibit hyperfine coupling constants in agreement those predicted by the density functional calculations. In the case of ZnP-n-Q (n = 3, 6, 10), on the other hand, the hydrogen bond between two amide groups provides a structural scaffold to assemble the donor (ZnP) and the acceptor (Q) moiety together with the hydrogen bond between the N-H proton and the carbonyl oxygen of Q, leading to attainment of the charge-separated state with a long lifetime up to a microsecond. © 2005 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know