Proper Gaussian basis sets for density functional studies of water dimers and trimers
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 109, Issue: 46, Page: 21471-21475
2005
- 35Citations
- 57Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The accuracy of the Perdew-Burke-Ernzerhof and Tao-Perdew-Staroverov- Scuseria density functionals for describing noncovalent interaction energies in small water clusters is studied by testing 11 basis sets on a reduced test set proposed by Dahlke and Truhlar (J. Phys. Chem. B 2005, 109, 15677). We have also tested variants of the Perdew-Burke-Ernzerhof functional and the Becke98 hybrid functional. While moderate basis sets give converged density functional theory results for covalent dissociation energies, this is not true for noncovalent interaction energies. Our results show that density functionals give converged interaction energies with aug-cc-pVTZ and aug-cc-pVQZ basis sets. Gradual simplification of the basis set introduces an increasing overbinding effect. The best agreement with the high-level result was obtained by the Perdew-Burke-Ernzerhof functional at the basis set limit. The converged Tao-Perdew-Staroverov-Scuseria interaction energies show a systematic underbinding effect that can be compensated by a somewhat systematic overbinding basis set effect of smaller basis sets such as 6-31+G(d,2p). The inclusion of the diffuse functions in the oxygen basis set is very important, while the inclusion of the f functions practically does not influence the results. Improvement can be obtained by adding more hydrogen p functions to the 6-31+G basis set. © 2005 American Chemical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=28944444661&origin=inward; http://dx.doi.org/10.1021/jp055443+; http://www.ncbi.nlm.nih.gov/pubmed/16853784; http://pubs.acs.org/journals/jpcbfk/index.html; http://dx.doi.org/10.1021/jp055443; https://pubs.acs.org/doi/10.1021/jp055443%2B
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know