Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores.
The journal of physical chemistry. B, ISSN: 1520-6106, Vol: 111, Issue: 14, Page: 3591-8
2007
- 24Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- CrossRef24
- Captures15
- Readers15
- 15
Article Description
We demonstrate a complete procedure for simulations of electric field poled polymeric nonlinear optical systems with the purpose to evaluate the macroscopic electro-optic coefficients. The simulations cover the electric field poling effects on the chromophore order at the liquid state, the cooling procedure from the liquid to the solid state in the presence of the poling field, and the back-relaxation of the system after the removal of the field. We use Disperse Red chromophore molecules doped in a poly(methyl methacrylate) matrix for a numerical demonstration of the total procedure. On the basis of the simulation results, the polymer mobility and the static properties of the dopant chromophores are derived. In the liquid state, the chromophore molecules are closer to the side chains than to the backbones of the polymer matrix, and after the simulated annealing, the polymer matrix tends to be closely packed, leading to a significant change in the polymer structure around the chromophore molecules. Besides predicting the absolute macroscopic electro-optic coefficient values, the results are used to derive the microscopic origin of these values in terms of geometric and electronic structure, loading, poling, and back-relaxation effects, thereby aiding to establish design principles for optimum guest-host configurations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know