Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties
Journal of Physical Chemistry C, ISSN: 1932-7447, Vol: 111, Issue: 34, Page: 12522-12527
2007
- 51Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The fabrication and optical properties of a nanostructured system consisting of free-standing metallic nanorods surrounded by a dielectric nanoshell are reported. The adjustable core-shell geometry allows the resonant optical properties of the system to be tuned throughout the visible spectrum in the 500-900 nm range. The shell presents a tubular geometry of uniform thickness that can be varied from a fraction of a nanometer to a few tens of nanometers. This creates a well-defined subattoliter volume for the integration of a substance to be excited or probed. To exemplify such an application, the sensitivity of the nanostructured system to the variation of the shell's index of refraction is studied as a function of shell thickness and nanorod aspect ratio. The spectral sensitivity of the longitudinal resonance of the structure was found to be about 100 nm per refractive index unit with a figure of merit (sensitivity/line-width) of about 1. © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know