Self-assembly of ternary cubic, hexagonal, and lamellar mesophases using the lattice-Boltzmann kinetic method
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 112, Issue: 10, Page: 2950-2957
2008
- 21Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We use a kinetic lattice-Boltzmann method to simulate the self-assembly of the cubic primitive (P), diamond (D), and gyroid (G) mesophases from an initial quench composed of oil, water, and amphiphilic particles. Here, we also report the self-assembly of the noncubic hexagonal phase and two lamellar phases, one with periodic convolutions. The periodic mesophase structures are emergent from the underlying conservation laws and quasi-molecular interactions of the lattice-Boltzmann model. We locate regions of the model's parameter space where the sequence of appearance of mesophases lamellar → primitive → hexagonal is in agreement with pressure jump experiments and the sequence cubic → lamellar is in agreement with compositional variations reported in the literature. The ability of our lattice-Boltzmann model to simulate self-assembly of cubic and noncubic phases in a unified and consistent manner opens the way for further investigations into the transition pathways and kinetics of the phase transitions between these states as well as of the rheology of these phases. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know