Preparation and characterization of 3 nm magnetic NiAu nanoparticles
Journal of Physical Chemistry C, ISSN: 1932-7447, Vol: 112, Issue: 14, Page: 5365-5372
2008
- 35Citations
- 491Usage
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations35
- Citation Indexes35
- CrossRef35
- 35
- Usage491
- Downloads476
- Abstract Views15
- Captures40
- Readers40
- 40
Article Description
Using PAMAM dendrimers as nanoparticle templates, a synthetic route to prepare 3 nm magnetic NiAu nanoparticles was developed. Aqueous solutions of hydroxyl-terminated generation 5 PAMAM dendrimers in 25 mM NaClO4 were shown to bind aqueous NiII. Coreduction of NiII and AuIII salts yielded bimetallic dendrimer stabilized nanoparticles, which were extracted into toluene with decanethiol. Characterization of the resulting monolayer protected clusters (MPCs) with transmission electron microscopy and UV-visible, atomic absorption, and X-ray photoelectron spectroscopies suggested that the MPCs had substantial surface enrichment in Au. Superconducting quantum interference device (SQUID) measurements at 5 K show the bimetallic MPCs to have low coercivity and saturation magnetization relative to bulk Ni. Solution nuclear magnetic resonance (NMR) studies using the Evans method showed the bimetallic nanoparticles retain magnetic properties at ambient temperatures.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=47149111251&origin=inward; http://dx.doi.org/10.1021/jp076982c; https://pubs.acs.org/doi/10.1021/jp076982c; https://digitalcommons.trinity.edu/chem_faculty/4; https://digitalcommons.trinity.edu/cgi/viewcontent.cgi?article=1003&context=chem_faculty; http://pubs.acs.org/doi/abs/10.1021/jp076982c
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know