Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration
Journal of Physical Chemistry B, ISSN: 1520-5207, Vol: 116, Issue: 19, Page: 5694-5702
2012
- 36Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- CrossRef36
- 36
- Captures31
- Readers31
- 31
Article Description
Post-translational nitration of tyrosine is considered to be an important step in controlling the multiple functions of cytochrome c (Cyt-c). However, the underlying structural basis and mechanism are not yet understood. In this work, human Cyt-c variants in which all but one tyrosine has been substituted by phenylalanine have been studied by resonance Raman and electrochemical methods to probe the consequences of tyrosine nitration on the heme pocket structure and the redox potential. The mutagenic modifications of the protein cause only subtle conformational changes of the protein and small negative shifts of the redox potentials which can be rationalized in terms of long-range electrostatic effects on the heme. The data indicate that the contributions of the individual tyrosines for maintaining the relatively high redox potential of Cyt-c are additive. Nitration of individual tyrosines leads to a destabilization of the axial Fe-Met80 bond which causes the substitution of the native Met ligand by a water molecule or a lysine residue for a fraction of the proteins. Electrostatic immobilization of the protein variants on electrodes coated by self-assembled monolayers (SAMs) of mercaptounadecanoic acid destabilizes the heme pocket structure of both the nitrated and non-nitrated variants. Here, the involvement of surface lysines in binding to the SAM surface prevents the replacement of the Met80 ligand by a lysine but instead a His-His coordinated species is formed. The results indicate that structural perturbations of the heme pocket of Cyt-c due to tyrosine nitration and to local electric fields are independent of each other and occur via different molecular mechanisms. The present results are consistent with the view that either tyrosine nitration or electrostatic binding to the inner mitochondrial membrane, or both events together, are responsible for the switch from the redox to the peroxidase function. © 2012 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know