A hybrid method employing breakdown anodization and electrophoretic deposition for superhydrophilic surfaces
Journal of Physical Chemistry B, ISSN: 1520-5207, Vol: 117, Issue: 6, Page: 1714-1723
2013
- 14Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef13
- Captures15
- Readers15
- 15
Article Description
A fabrication method is developed for superhydrophilic surfaces with high capillary pressure and fast spreading speed. The fabrication method consists of electrophoretic deposition (EPD) and breakdown anodization (BDA). Nanopores and micropores were produced on titanium plates by EPD and BDA, respectively. In EPD, TiO nanoparticles were used to enhance the surface energy and create nanoporous structures, while BDA was employed to produce microporous structures. Capillary rise measurements (CRM) were utilized to characterize superhydrophilic surfaces in terms of capillary pressure and spreading speed. From CRM, it was revealed that microporous structures play a dominant role in determining transport properties, and nanoporous structures affect local wettability without significantly reducing spreading speed. By combining BDA and EPD into a hybrid method, dual-scale (nano and micro) porous structures were produced on titanium plates. The methods presented offer the potential to vary the transport characteristics of superhydrophilic surfaces by altering the nanoscale and microscale features independently. As an example, surfaces with unconventional capillary flows were produced by the hybrid method. This method provides additional opportunities to investigate wetting phenomena while offering a potentially low cost process for industrial applications. © 2012 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know