Quantum dot photoactivation of Pt(IV) anticancer agents: Evidence of an electron transfer mechanism driven by electronic coupling
Journal of Physical Chemistry C, ISSN: 1932-7455, Vol: 118, Issue: 16, Page: 8712-8721
2014
- 21Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Herein we elucidate the mechanism of photoreduction of the Pt(IV) complex cis,cis,trans-[Pt(NH)(Cl)(O CCHCHCOH)] (1) into Pt(II) species (among which is cisplatin) by quantum dots (QDs), a process which holds potential for photodynamic therapy. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) methodologies, integrated by selected experiments, were employed to study the interaction and the light-induced electron transfer (ET) process occurring between two QD models and 1. Direct adsorption of the complex on the nanomaterial surface results in large electronic coupling between the LUMO (lowest unoccupied molecular orbital) of the excited QD* and the LUMO+1 of 1, providing the driving force to the light-induced release of the succinate ligands from the Pt derivative. As confirmed by photolysis experiments performed a posteriori, DFT highlights that QD photoactivation of 1 can favor the formation of preferred Pt(II) photoproducts, paving the way for the design of novel hybrid Pt(IV)-semiconductor systems where photochemical processes can be finely tuned. © 2014 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know