Atomistic force field for pyridinium-based ionic liquids: Reliable transport properties
Journal of Physical Chemistry B, ISSN: 1520-5207, Vol: 118, Issue: 36, Page: 10716-10724
2014
- 54Citations
- 63Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations54
- Citation Indexes54
- 54
- CrossRef47
- Captures63
- Readers63
- 63
Article Description
Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophos-phate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cation-anion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia Lopes-Padua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids. (Figure Presented).
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know