The role of charge states in the atomic structure of Cu and Pt (n = 2-14 atoms) clusters: A DFT investigation
Journal of Physical Chemistry A, ISSN: 1520-5215, Vol: 118, Issue: 45, Page: 10813-10821
2014
- 110Citations
- 91Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations110
- Citation Indexes110
- 110
- CrossRef87
- Captures91
- Readers91
- 91
Article Description
In general, because of the high computational demand, most theoretical studies addressing cationic and anionic clusters assume structural relaxation from the ground state neutral geometries. Such approach has its limits as some clusters could undergo a drastic structural deformation upon gaining or losing one electron. By engaging symmetry-unrestricted density functional calculations with an extensive search among various structures for each size and state of charge, we addressed the investigation of the technologically relevant Cu and Pt clusters for n = 2-14 atoms in the cationic, neutral, and anionic states to analyze the behavior of the structural, electronic, and energetic properties as a function of size and charge state. Moreover, we considered potentially high-energy isomers allowing foresight comparison with experimental results. Considering fixed cluster sizes, we found that distinct charge states lead to different structural geometries, revealing a clear tendency of decreasing average coordination as the electron density is increased. This behavior prompts significant changes in all considered properties, namely, energy gaps between occupied and unoccupied states, magnetic moment, detachment energy, ionization potential, center of gravity and "bandwidth" of occupied d-states, stability function, binding energy, electric dipole moment and sd hybridization. Furthermore, we identified a strong correlation between magic Pt clusters with peaks in sd hybridization index, allowing us to conclude that sd hybridization is one of the mechanisms for stabilization for Pt clusters. Our results form a well-established basis upon which a deeper understanding of the stability and reactivity of metal clusters can be built, as well as the possibility to tune and exploit cluster properties as a function of size and charge.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know