Preferential protonation and methylation site of thiopyrimidine derivatives in solution: NMR data
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 112, Issue: 10, Page: 3259-3267
2008
- 20Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Protonation (alkylation) sites of several thiopyrimidine derivatives were directly determined by H-N (H- C) heteronuclear single quantum coherence/heteronuclear multiple bond correlation methods, and it was found that in all compounds, protonation (methylation) occurred at the N1 nitrogen. GIAO DFT chemical shifts were in full agreement with the determined tautomeric structures. According to ab initio calculations, the stability of the different protonated forms and methylated derivatives was favored due to thermodynamic control and not kinetic control. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know