Enhancement of reaction specificity at interfaces
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 112, Issue: 13, Page: 3948-3954
2008
- 1Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A realistic picture of a cell is that of a highly viscous, condensed gel-like substance, crowded with macromolecules that are mostly anchored to membranes and to intricate networks of cytoskeletal elements. Theoretical and experimental approaches to investigating crowding have not considered the role of diffusion through a crowded medium in affecting the selectivity and specificity of reactions. Such diffusion is especially important when one considers interfaces, where at least one reactant must move through the medium and reach the interface. Here, we address this issue by directly investigating how diffusion through a gel medium affects the competition between a single specific reaction and a large number of weak nonspecific interactions, a process that is typical of reactions occurring at interfaces. We present an approach for achieving orientation-controlled interactions based on the configuration-dependent diffusion rate of the reacting molecule through a gel medium. The effectiveness of the method is demonstrated by the high selectivity obtained both in the adsorption of DNA to a surface and in DNA hybridization to preadsorbed single-strand oligomer on a surface. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know