Interaction of coinage metal clusters with chalcogen dihydrides
Journal of Physical Chemistry A, ISSN: 1089-5639, Vol: 112, Issue: 34, Page: 7969-7975
2008
- 37Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- CrossRef37
- 36
- Captures22
- Readers22
- 22
Article Description
The interaction of chalcogen dihydrides (HE; E = O, S, and Se) with small coinage metal clusters (M; M = Cu, Ag, and Au, n = 3 and 4) is studied based on density functional theory, with a focus on the nature of chalcogen-metal bonds. A newly developed pseudopotential-based correlation-consistent basis set is used for metal clusters together with the 6-311++G** basis set for the remaining atoms. Geometrical data identified that no significant deviation has been observed for molecules before and after complexation. For these three metals, binding energy calculations indicate that gold has the highest and silver has the lowest affinities for interaction with HE. In comparison with gold and copper, complexation between silver and chalcogen dihydrides is significantly weaker. It is found that interaction of H2E molecules with the coinage metals have the order of HSe > HS > HO. Therefore, in agreement with experimental works, our calculations confirm that the gold-selenium bond is the most stable. The nature of M-E bonds is also interpreted by means of the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the QTAIM results, the bonds are found to be partially ionic and partially covalent. Natural resonance theory (NRT) is used to calculate natural bond order and bond polarity. The NRT result indicates that the percentage of polarity of M-E bonds is affected by coinage metals. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know