Excited state electronic structures and photochemistry of heterocyclic annulated perylene (HAP) materials tuned by heteroatoms: S, Se, N, O, C, Si, and B
Journal of Physical Chemistry A, ISSN: 1089-5639, Vol: 113, Issue: 16, Page: 4788-4794
2009
- 120Citations
- 41Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations120
- Citation Indexes120
- 120
- CrossRef107
- Captures41
- Readers41
- 41
Article Description
Time-dependent density functional theory (TDDFT) method was performed to investigate the excited state electronic structures and photochemistry of a variety of heterocyclic annulated perylene (HAP) materials. The calculated electronic structures and photochemical properties of the newly synthesized S-, Se-, and N-heterocyclic annulated perylenes were in good agreement with the experimental results. Moreover, the O-, C-, Si-, and B-heterocyclic annulated perylenes were also theoretically designed and investigated by using the same computational methods in this work. As a result, we found that the electronic structures and photochemical properties of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are similar to each other. The energy levels of the LUMO orbital for the S-, Se-, N-, O-, and C-heterocyclic annulated perylenes become higher than those of unsubstituted perylene. At the same time, the energy gaps between LUMO and HOMO for these heterocyclic annulated perylenes are also increased in comparison with those of unsubstituted perylene. Hence, both absorption and fluorescence spectra of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are correspondingly blue-shifted relative to those of unsubstituted perylene. In addition, two bonds formed by heteroatoms with perylene are lengthened in the electronic excited state of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes. On the contrary, these bonds formed by heteroatoms with perylene are shortened in the electronic excited state of Si- and B-heterocyclic annulated perylenes. Furthermore, energy levels of the LUMO orbital for Si- and B-heterocyclic annulated perylenes become significantly lowered in comparison with that of unsubstituted perylene. At the same time, energy gaps between LUMO and HOMO for Si- and B-heterocyclic annulated perylenes become decreased relative to those of unsubstituted perylene. Thus, both absorption and fluorescence spectra of Si- and B-heterocyclic annulated perylenes are significantly red-shifted in comparison with those of unsubstituted perylene. The differences of electronic structures and photochemistry of these heterocyclic annulated perylene materials can be ascribed to the electron delocalization of LUMO orbital from heteroatom into the perylene skeleton for Si- and B-heterocyclic annulated perylenes, because the electron of the LUMO orbital for S-, Se-, N-, O-, and C-heterocyclic annulated perylenes is localized on the heteroatoms. © 2009 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know