Van der waals interactions in density functional theory using wannier functions
Journal of Physical Chemistry A, ISSN: 1089-5639, Vol: 113, Issue: 17, Page: 5224-5234
2009
- 80Citations
- 81Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations80
- Citation Indexes80
- 80
- CrossRef77
- Captures81
- Readers81
- 81
Article Description
Ver der Waals interactions between atoms and molecules are ubiquitous and very important for many molecular and condensed-matter structures. These systems are often studied from first principles using the density functional theory (DFT), because this approach often represents a good compromise between accuracy and efficiency. However, the commonly used DFT functionals are not able to describe properly van der Waals effects. Most attempts to correct for this problem have a basic semiempirical character, although computationally more expensive first principles schemes have been recently developed. Of course, the key issue is finding a way to include van der Waals interactions in DFT without dramatically increasing the computational cost. We here describe in detail the recently developed scheme, based on the use of the maximally localized Wannier functions, that combines the simplicity of the semiempirical formalism with the accuracy of the first principles approaches and appears to be promising, being simple, efficient, accurate, and transferable (for instance, charge polarization effects are naturally included). The results of successful applications to small molecules, bulk Ar, and the interaction of Ar, He, and H2 with two different Al surfaces are presented. Directions for further improvements of the method are finally suggested. © 2009 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know