Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces
Journal of Physical Chemistry A, ISSN: 1089-5639, Vol: 113, Issue: 16, Page: 4709-4721
2009
- 55Citations
- 4Usage
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations55
- Citation Indexes55
- 55
- CrossRef47
- Usage4
- Abstract Views4
- Captures20
- Readers20
- 20
Article Description
We report here calculated J = 0 vibrational frequencies for 1CH2 and HCN with root-mean-square error relative to available measurements of 2.0 cm-1 and 3.2 cm-1, respectively. These results are obtained with DVR calculations with a dense grid on ab initio potential energy surfaces (PESs). The ab initio electronic structure calculations employed are Davidson-corrected MRCI calculations with double-, triple-, and quadruple--4 basis sets extrapolated to the complete basis set (CBS) limit. In the 1CH2 case, Full CI tests of the Davidson correction at small basis set levels lead to a scaling of the correction with the bend angle that can be profitably applied at the CBS limit. Core-valence corrections are added derived from CCSD(T) calculations with and without frozen cores. Relativistic and non-Born-Oppenheimer corrections are available for HCN and were applied. CBS limit CCSD(T) and CASPT2 calculations with the same basis sets were also tried for HCN. The CCSD(T) results are noticeably less accurate than the MRCI results while the CASPT2 results are much poorer. The PESs were generated automatically using the local interpolative moving least- squares method (L-IMLS). A general triatomic code is described where the L-IMLS method is interfaced with several common electronic structure packages. All PESs were computed with this code running in parallel on eight processors. The L-IMLS method provides global and local fitting error measures important in automatically growing the PES from initial ab initio seed points. The reliability of this approach was tested for 1CH2 by comparing DVR-calculated vibrational levels on an L-IMLS ab initio surface with levels generated by an explicit ab initio calculation at each DVR grid point. For all levels (∼ 200) below 20 000 cm-1, the mean unsigned difference between the levels of these two calculations was 0.1 cm-1, consistent with the L-IMLS estimated mean unsigned fitting error of 0.3 cm-1. All L-IMLS PESs used in this work have comparable mean unsigned fitting errors, implying that fitting errors have a negligible role in the final errors of the computed vibrational levels with experiment. Less than 500 ab initio calculations of the energy and gradients are required to achieve this level of accuracy. © 2009 American Chemical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=65649111190&origin=inward; http://dx.doi.org/10.1021/jp900409r; http://www.ncbi.nlm.nih.gov/pubmed/19371124; https://pubs.acs.org/doi/10.1021/jp900409r; https://scholarsmine.mst.edu/chem_facwork/385; https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1384&context=chem_facwork; http://scholarsmine.mst.edu/chem_facwork/385; http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1384&context=chem_facwork
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know