4-tert-Butyl pyridine bond site and band bending on TiO (110)
Journal of Physical Chemistry C, ISSN: 1932-7447, Vol: 114, Issue: 5, Page: 2315-2320
2010
- 42Citations
- 58Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present work, we study the bonding of 4-tert-butyl pyridine (4TBP) to the TiO(110) surface using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The results show that at low coverage, 4TBP adsorbs preferentially on oxygen vacancies. The calculated adsorption energy at the vacancies is 120 kJ/mol larger than that on the five-fold-coordinated Ti sites located in the rows on the TiO surface. The vacancy is "healed" by 4TBP, and the related gap state is strongly reduced through charge transfer into empty π * orbitals on the pyridine ring. This leads to a change in surface band bending by 0.2 eV toward lower binding energies. The band bending does not change with further 4TBP deposition when saturating the surface to monolayer coverage, where the TiO surface is effectively protected against further adsorption by the dense 4TBP layer. Copyright © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know