Observation of photoconductivity in Sn-Doped ZnO nanowires and their photoenhanced field emission behavior
Journal of Physical Chemistry C, ISSN: 1932-7447, Vol: 114, Issue: 9, Page: 3843-3849
2010
- 69Citations
- 38Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sn-doped ZnO nanowire films have been successfully synthesized by electrodeposition on zinc foil followed by annealing in air at 400 °C for 4 h. The XRD patterns of the annealed specimens exhibit a set of welldefined diffraction peaks indexed to the wurtzite phase of ZnO. The surface morphology of the as-synthesized films showed a network of densely packed flakes/sheets on the substrate. However, upon annealing, the formation of ZnO nanowires, processing length in the range of several micrometers and diameter less than 150 nm, on the entire substrate is observed. The relative atomic percentage of Sn, estimated from the energy dispersive spectra, was found to be 0.5 and 2.0 in the ZnO films deposited for 10 and 40 min durations, respectively. From the field emission studies, the values of the turn-on field and threshold field, required to draw emission current density of 10 and 100 μA/cm2, are observed to be 0.68 and 1.1 V/μm for 0.5% Sndoped ZnO and 1.72 and 2.25 V/μm for 2.0% Sn-doped ZnO, respectively. The field emission current stability investigated for a duration of 6 h at the preset value of 100 μA is found to be excellent. A prominent photoenhancement in the field emission current upon visible light illumination of the Sn-doped ZnO nanowires films has been observed. This enhancement has been attributed to the photoconductivity of the Sn-doped ZnO. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know