PlumX Metrics
Embed PlumX Metrics

Self-assembly of α-functionalized terthiophenes on gold

Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 101, Issue: 31, Page: 5951-5962
1997
  • 77
    Citations
  • 0
    Usage
  • 28
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    77
    • Citation Indexes
      77
  • Captures
    28

Article Description

α-Functionalized terthiophenes containing disulfide (-S-T-H) and alkanethiol (HS-(CH)-T-H) anchoring groups have been synthesized for direct immobilization onto gold. Monolayer structures of these compounds are prepared by spontaneous assembly from ethanol solutions on evaporated gold substrates and thoroughly characterized by ellipsometry, contact angle goniometry, infrared and X-ray photoelectron spectroscopy, and cyclic voltammetry. The two molecules coordinate to the gold substrate exclusively via the anchoring groups upon formation of gold-thiolate bonds. The kinetics of monolayer formation vary dramatically for the two compounds. The alkanethiol analogue assembles rapidly, within a few minutes, and forms a densely packed and highly organized monolayer, with the alkyl chains in an almost perfect all-trans conformation and the C-C axis of the α-T units tilted about 14° away from the surface normal. The assembly process is much slower for the disulfide, but an organized monolayer with an average α-T chain tilt of about 33° will eventually form when the assembly is allowed to equilibrate with a solution containing the disulfide for at least 1 day. Moreover, the two monolayer assemblies also display a remarkably different electrochemical behavior. The heterogeneous electron-transfer rate at the disulfide-covered gold substrate is almost indistinguishable from that at bare gold, suggesting that the assembly contains a large number of easily accessible defects. An alternative mechanism for explaining the large electron-transfer rate involving electronic coupling via the conjugated π-system of the α-T units is also proposed. The electrochemical response is significantly reduced for the HS-(CH)]-T-H assembly, but another type of defects, the socalled "shallow defects" originating from sparsely populated areas on the electrode surface, can be identified.

Bibliographic Details

B. Liedberg; Z. Yang; I. Engquist; M. Wirde; U. Gelius; G. Götz; P. Bäuerle; R.-M. Rummel; Ch. Ziegler; W. Göpel

American Chemical Society (ACS)

Chemistry; Materials Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know