Dissolution of magnesium oxide in aqueous acid: An atomic force microscopy study
Journal of Physical Chemistry B, ISSN: 1520-6106, Vol: 102, Issue: 37, Page: 7156-7162
1998
- 31Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The dissolution of the surfaces (100), (110), and (111) of MgO in aqueous hydrochloric acid is studied by in-situ AFM experiments in a flow cell with known hydrodynamics,which permits the modeling of the rate of proton transport to the solid surface. Comparison with directly measured rates of dissolution determined via monitoring the absolute height of the surface in real time shows that the dissolution of all three surfaces is a surface-controlled reaction. Examination of the surface morphology shows that the (100) plane dissolves via the growth of etch pits which are of circular or square shape depending on the acid concentration. In contrast, the (110) surface dissolves to form a corrugated surface of parallel ridges whose surfaces are predominantly composed of (100) planes. The (111) surface dissolves via triangular etch pits of a fixed orientation where (100) planes are partly re-expressed during the pit growth. These observation are in concordance with previous reports that the (100) plane is the most stable surface of MgO.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know