Long-range architecture of single lipid-based complex nanoparticles with local hexagonal packing
Journal of Physical Chemistry Letters, ISSN: 1948-7185, Vol: 2, Issue: 1, Page: 41-46
2011
- 9Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef7
- Captures23
- Readers23
- 23
Article Description
The three-dimensional architecture of single nanoparticles made of inverse micellar lipids templated on polyelectrolytes and exhibiting a local hexagonal packing is elucidated by high-resolution cryoelectron microscopy and coarse-grained Monte Carlo simulations. Cryoelectron microscopy demonstrates that the internal structure of the complexes is less ordered than commonly recognized from X-ray diffraction. We have devised a coarse-grained model of self-avoiding flexible tubes mimicking the lipid-coated polyelectrolytes and interacting via a short-range attractive potential. Consistently with cryoelectron microscopy, the resulting clusters obtained through a Monte Carlo scheme exhibit a varying degree of order ranging from weakly organized aggregates to partially organized spooled and straight bundles, depending on the length and on the persistence length of the tubes. These findings may help in the design of self-assembled lipid-based complexes for biomedical and nanotechnological applications. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know