Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy
Langmuir, ISSN: 0743-7463, Vol: 23, Issue: 4, Page: 2007-2014
2007
- 71Citations
- 48Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations71
- Citation Indexes71
- 71
- CrossRef55
- Captures48
- Readers48
- 48
Article Description
Atomic force microscopy was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and composite terpolymer core-silica shell particles in air and water media. The composite particles were achieved with two different approaches: using a silane coupling agent (composite A) or attractive electrostatic interactions (composite B) between the core and the shell. Young's moduli (E) of 4.3 ± 0.7, 11.1 ± 1.7, and 8.4 ± 1.7 GPa were measured in air for the PMMA-based terpolymer, composite A, and composite B, respectively. In water, E decreases to 1.6 ± 0.2 GPa for the terpolymer; it shows a slight decrease to 8.0 ± 1.2 GPa for composite A, while it decreases to 2.9 ± 0.6 GPa for composite B. This trend is explained by considering a 50% swelling of the polymer in water confirmed by dynamic light scattering. Close agreement is found between the absolute values of elastic moduli determined by nanoindentation and known values for the corresponding bulk materials. The thickness of the silica coating affects the mechanical properties of composite A. In the case of composite B, because the silica shell consists of separate particles free to move in the longitudinal direction that do not individually deform when the entire composite deforms, the elastic properties of the composites are determined exclusively by the properties of the polymer core. These results provide a basis for tailoring the mechanical properties of polymer and composite particles in air and in solution, essential in the design of next-generation abrasive schemes for several technological applications. © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know