Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes
Langmuir, ISSN: 0743-7463, Vol: 27, Issue: 7, Page: 3588-3599
2011
- 119Citations
- 63Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations119
- Citation Indexes119
- 119
- CrossRef113
- Captures63
- Readers63
- 63
Article Description
The aggregation and deposition kinetics of two multiwalled carbon nanotubes (MWNTs) with different degrees of surface oxidation are investigated using time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. Carboxyl groups are determined to be the predominant oxygen-containing surface functional groups for both MWNTs through X-ray photoelectron spectroscopy (XPS). The aggregation and deposition behavior of both MWNTs is in qualitative agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentration (CCC) of the highly oxidized MWNTs (HO-MWNTs) is significantly higher than the lowly oxidized MWNTs (LO-MWNTs) in the presence of NaCl (210 and 53 mM, respectively) since HO-MWNTs have a higher surface charge density. In contrast, the aggregation inverse stability profiles of HO-MWNTs and LO-MWNTs are identical and yield comparable CCCs (0.9 and 1.0 mM, respectively) in the presence of CaCl. Similar to the results obtained from the aggregation study, HO-MWNTs are considerably more stable to deposition on silica surfaces compared to LO-MWNTs in the presence of NaCl. However, both MWNTs have the same propensity to undergo deposition in the presence of CaCl. The remarkable similarity in the aggregation and deposition kinetics of HO-MWNTs and LO-MWNTs in CaCl may be due to Ca cations having a higher affinity to form complexes with adjacent carboxyl groups on HO-MWNTs than with isolated carboxyl groups on LO-MWNTs. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know