A novel glucose/pH responsive low-molecular-weight organogel of easy recycling
Langmuir, ISSN: 0743-7463, Vol: 29, Issue: 44, Page: 13568-13575
2013
- 51Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef45
- Captures40
- Readers40
- 40
Article Description
A new phenylboronic acid based gelator was developed to prepare low-molecular-weight organogel (LMOG), which could interact with several solvents to assemble into a three-dimensional nanofiber network. H NMR spectroscopy study suggests that the driving force for the gelation includes hydrogen bonding and π-π stacking. Evaluated by UV-spectroscopy, the gel showed a prompt initial response to glucose at low concentration of 0.012 mmol/mL, which is a critical concentration of venous plasma glucose for diabetes. Significantly, this organogel exhibits excellent sensitivity to glucose among seven sugars tested (i.e., mannitol, galactose, lactose, maltose, sucrose, and fructose). The proposed formation of hydrogen-bonded complexes during the glucose sensing was supported by our energy calculation. Meanwhile, this organogel exhibits pH-response. Importantly, this LMOG could be conveniently recycled and thus be reused. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know