Surface-lattice model describes electrostatic interactions of ions and polycations with bacterial lipopolysaccharides: Ion valence and polycation's excluded area
Langmuir, ISSN: 1520-5827, Vol: 30, Issue: 45, Page: 13631-13640
2014
- 7Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef6
- Captures11
- Readers11
- 11
Article Description
The bacterial outer membrane (OM) is compositionally distinct and contains polyanionic lipopolysaccharide (LPS) in the outer layer as a main component. It has long been known that the cation-binding ability of LPS is one of the key determinants of OM permeability. Here we present a two-dimensional lattice model of the outer LPS layer, in which the lattice is decorated with bound ions or polycations; while small ions can occupy single binding sites, polycations, modeled as (charged) rods, compete for binding sites through their area exclusion, a consequence of their multisite binding. Our results suggest that in the parameter space of biological relevance, the effect of area exclusion is well-reflected in the competitive binding of Mg and polycations onto LPS; by reducing the apparent binding affinity of polycations, it enhances Mg binding. Despite simplifications, our results are generally consistent with the common view of Mg as OM-stabilizing and polycations as OM-perturbing agents. They will be useful for understanding how cationic antimicrobials can gain entry into the cytoplasmic membrane. We also outline a few strategies for extending our model toward a more realistic modeling of OM permeability.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know