Factors affecting the stability and performance of ionic liquid-based planar transient photodetectors
Langmuir, ISSN: 1520-5827, Vol: 31, Issue: 18, Page: 5235-5243
2015
- 12Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A novel planar architecture has been developed for the study of photodetectors utilizing the transient photocurrent response induced by a metal/insulator/semiconductor/metal (MISM) structured device, where the insulator is an ionic liquid (IL-MISM). Using vanadyl 2,3-naphthalocyanine, which absorbs in the communications-relevant near-infrared wavelength region (λmax,film ≈ 850 nm), in conjunction with C60 as a bulk heterojunction, the high capacitance of the formed electric double layers at the ionic liquid interfaces yields high charge separation efficiency within the semiconductor layer, and the minimal potential drop in the bulk ionic liquid allows the electrodes to be offset by distances of over 7 mm. Furthermore, the decrease in operational speed with increased electrode separation is beneficial for a clear modeling of the waveform of the photocurrent signal, free from the influence of measurement circuitry. Despite the use of a molecular semiconductor as the active layer in conjunction with a liquid insulating layer, devices with a stability of several days could be achieved, and the operational stability of such devices was shown to be dependent solely on the solubility of the active layer in the ionic liquid, even under atmospheric conditions. Furthermore, the greatly simplified device construction process, which does not rely on transparent electrode materials or direct electrode deposition, provides a highly reproducible platform for the study of the electronic processes within IL-MISM detectors that is largely free from architectural constraints.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know