Synthesis and characterization of bifunctional polymers carrying tris(bipyridyl)ruthenium(II) and triphenylamine units
Macromolecules, ISSN: 0024-9297, Vol: 36, Issue: 6, Page: 1779-1785
2003
- 69Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The synthesis, characterization, and properties of a highly soluble bifunctional polymer are described in which a tris(bipyridyl)Ru(II) unit acts as dye and triphenylamine units act as charge transport moieties. First a macroligand, a bipyridine carrying two poly(4-bromostyrene) chains, was synthesized by atom transfer radical polymerization (ATRP) of 4- bromostyrene in bulk using CuCl/PMDETA as the catalytic system and bis(chloromethyl) bipyridine as the initiator. The target polymer was then obtained via a polymer amination reaction in which the bromophenyl group was converted into a triphenylamine followed by metallation of the bipyridine unit of the macroligand with Ru(II) bis(bipyridine). The reaction conditions of ATRP and polymer amination reaction were optimized, and the degree of conversion for both steps was determined by gas chromatography (GC) analysis of rest monomer content and elemental analysis of unreacted bromine, respectively. The control in molecular weight was achieved maintaining a narrow distribution in the desired low molecular weight range of bulk polymerization of 4-bromostyrene. The polymer amination reaction using the Pd(OAc) and P(t-Bu) system was found to be very efficient, and the reaction was complete within 2 h. The metallation reaction could be followed by UV/vis spectroscopy. MALDI-TOF MS of the three polymers was carried out to obtain absolute molecular weights and their distribution. A comparison of these molecular weights gave additional information about the degree of polymer amination and metallation reaction. The thermal properties of the different polymers suggest that the thermal stability as well as the glass transition temperature increases from the starting macroligand which carries poly(4-bromostyrene) chains to the intermediate polymer having poly(vinyltriphenylamine) chains and finally to the bifunctional Ru(II) polymer complex.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know