Hydrophobic interaction model for upper and lower critical solution temperatures
Macromolecules, ISSN: 0024-9297, Vol: 36, Issue: 15, Page: 5845-5853
2003
- 38Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hydration of hydrophobic solutes in water is the cause of different phenomena, including the hydrophobic heat capacity anomaly, which are not yet fully understood. Because of its topicality, there has recently been growing interest in the mechanism of hydrophobic aggregation and in the physics on which it is based. In this study we use a simple yet powerful mixture model for water, an adapted two-state Muller-Lee-Graziano model, to describe the energy levels of water molecules as a function of their proximity to nonpolar solute molecules. The model is shown to provide an appropriate description of many-body interactions between the hydrophobic solute particles. The solubility and aggregation of hydrophobic substances are studied by evaluating detailed Monte Carlo simulations in the vicinity of the first-order aggregation phase transition. A closed-loop coexistence curve is found, which is consistent with a mean-field calculation carried out for the same system. In addition, the destabilizing effect of a chaotropic substance in the solution is studied by suitable modification of the MLG model. These findings suggest that a simple model for the hydrophobic interaction may contain the primary physical processes involved in hydrophobic aggregation and in the chaotropic effect.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know