Thermal behavior and kinetic analysis of the chain unfolding and refolding and of the concomitant nonpolar solvation and desolvation of two Elastin-like polymers
Macromolecules, ISSN: 0024-9297, Vol: 36, Issue: 22, Page: 8470-8476
2003
- 77Citations
- 48Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Water-induced chain dynamics alterations are of paramount importance in many protein-based polymers because they determine and affect to a great extent the temperature dependence of the end properties. In this study, the thermal behavior of the reversible unfolding and refolding of poly(Val-Pro-Gly-Val-Gly) and poly(Val-Pro-Ala-Val-Gly) and of their concurrent dehydration and hydration processes has been studied by differential scanning calorimetry (DSC) and turbidimetry. Contrary to the good reversibility shown by poly(Val-Pro-Gly-Val-Gly), the substitution of glycine by alanine in poly(Val-Pro-Ala-Val-Gly) perturbed to a large extent the process of chain unfolding. For the latter polymer, it was found that both chain unfolding and rehydration processes take place at large undercoolings, suggesting that both events occur far from equilibrium conditions and, therefore, are strongly dominated by kinetics. In this context, the existence of an hydration excess with a kinetic rather than a thermodynamic nature is a remarkable observation. The kinetics of folding and unfolding were also studied by using an isoconversional method of kinetic analysis, i.e., the model-free Friedmand's isoconversional method. As expected, the kinetics of the solvation of nonpolar moieties for both polymers indicated a complex and multistep process. Again, poly(Val-Pro-Ala-Val-Gly) showed a quite different pattern characterized by an acute hysteresis behavior which seems to govern the hydration process for this polymer. The differences observed between both polymers have been interpreted in terms of the hindrance provided by the methyl group in alanine during temperature-induced chain dynamics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know