Thermoresponsive nanoassemblies: Layer-by-layer assembly of hydrophilic-hydrophobic alternating copolymers
Macromolecules, ISSN: 0024-9297, Vol: 38, Issue: 8, Page: 3414-3419
2005
- 64Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multilayer films were assembled using the sequential alternate adsorption of a hydrophilic-hydrophobic copolymer, poly(styrene-alt-maleic acid) (PSMA), and poly(ethylene oxide) (PEO). The film buildup was followed using quartz crystal microgravimetry, and it was demonstrated that the incorporation of 0.2 M sodium chloride into the adsorption solution increased the adsorbed amount by a factor of approximately 2. Ten bilayer films of PSMA/PEO were shown to have a thickness of approximately 200-500 nm, depending on the specific adsorption conditions used. The surface roughness of the films was examined using scanning force microscopy and shown to be dependent on both the adsorption conditions used and the terminal layer of the assembly. Films prepared at higher ionic strength had a rougher surface, and films terminated with PSMA were rougher than those terminated with PEO. The films were shown to have a strong affinity for Rhodamine B, with the dye concentration in the film exceeding that in the adjacent solution by a factor of approximately 7.3 × 10. The absorbed dye was then released by elevating the temperature of the film, with the release rate dependent on the temperature of the release solution. The inclusion of the hydrophobic domains was shown to have a strong influence on the thermoresponsive behavior of the assemblies. © 2005 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know